Порядок модуляции qpsk. Фазовые виды манипуляции (BPSK, QPSK, M-PSK)

Фазоманипулированный сигнал имеет вид:

где и – постоянные параметры, – несущая частота.

Информация передается посредством фазы . Так как при когерентной демодуляции в приемнике имеется несущая , то путем сравнения сигнала (3.21) с несущей вычисляется текущий сдвиг фазы . Изменение фазы взаимнооднозначно связано с информационным сигналом .

Двоичная фазовая манипуляции (BPSK – Binary Phase Shift Keying)

Множеству значений информационного сигнала ставится в однозначное соответствие множество изменений фазы . При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, . Таким образом, для осуществления BPSK достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений . На выходе модулятора сигналы

, .


Рис. 3.38. Временная форма и сигнальное созвездие сигнала BPSK:

а – цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Временная форма сигнала и его созвездие показаны на рис.3.38.

Подвидом семейства BPSK является дифференциальная (относительная) BPSK (DBPSK). Необходимость относительной модуляции обусловлена тем, что большинство схем восстановления несущей частоты приводят к фазовой неоднозначности восстановленной несущей. В результате восстановления может образоваться постоянный фазовый сдвиг, кратный 180º. Сравнение принимаемого сигнала с восстановленной несущей приведет в этом случае к инвертированию (изменению значений всех битов на противоположные). Этого можно избежать, если кодировать не абсолютный сдвиг фазы, а его изменение относительно значения на предыдущем битовом интервале. Например, если на текущем битовом интервале значение бита изменилось по сравнению с предыдущим, то изменяется и значение фазы модулированного сигнала на 180º, если осталось прежним, то фаза также не изменяется.

Спектральная плотность мощности сигнала BPSK совпадает с плотностью сигнала OOK за исключением отсутствия в спектре сигнала несущей частоты:

, (3,22)

Квадратурная фазовая манипуляция (QPSK – Quadrature Phase Shift Keying)

Квадратурная фазовая манипуляция является четырехуровневой фазовой манипуляцией ( =4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества и множеством символов (дибитов) цифрового сообщения устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием рис.3.39. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Каждому значению фазы модулированного сигнала соответствует 2 бита информации, и поэтому изменение модулирующего сигнала при QPSK-модуляции происходит в 2 раза реже, чем при BPSK-модуляции при одинаковой скорости передачи информации. Известно, что спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при замене символьного интервала на символьный . Для четырехуровневой модуляции =4 и, следовательно, .

Спектральная плотность мощности QPSK-сигнала при модулирующем сигнале с импульсами прямоугольной формы на основании (3.22) определяется выражением:

.

Из данной формулы видно, что расстояние между первыми нулями спектральной плотности мощности сигнала QPSK равно , что в 2 раза меньше, чем для сигнала BPSK. Другими словами, спектральная эффективность квадратурной модуляции QPSK в 2 раза выше, чем бинарной модуляции ВPSK.

Сигнал QPSK можно записать в виде

где .

Сигнал QPSK можно представить в виде синфазной и квадратурной составляющих

где - синфазная составляющая - го символа,

ЛикБез > Радиосвязь

Четырехпозиционная фазовая модуляция (QPSK)

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и сумматор. На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. Структурная схема такого модулятора приведена на рисунке 2.


Так как при этом виде модуляции в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих - синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.

Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ


Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.

Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста


Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 17, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5.

Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK


Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.


Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.

Рисунок 7 векторная диаграмма QPSK сигнала c a = 0.6


Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.

Рисунок 8. временная диаграмма QPSK сигнала c a = 0.6


Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6. При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.

Рисунок 9 – спектрограмма QPSK сигнала c a = 0.6


Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот MSK позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Квадратурная фазовая манипуляция (QPSK)

Цифровая фазовая манипуляция определяется обычно числом отличающихся значений углов фазы: простейшая - двоичная фазовая манипуляция BPSK, когда несущая принимает значения фазы 0 или 180°. Когда для описания одного импульса модулирующего сигнала используется одно из 4-х значений фазового угла, например: 45°, 135°,-45°,- 135°, то в этом случае каждое значение фазового угла содержит два бита информации, и такой вид манипуляции называется квадратурной фазовой манипуляцией QPSK (Quadrature Phase Shift Keying).

Четырех позиционная (квадратурная) фазовая манипуляция (QPSK может быть реализована как 4-х позиционная со сдвигом O-QPSK (Offset Quadrature Phase-Shift Keying) или как дифференциальная квадратурная фазовая манипуляция DQPSK (Differential Quadrature Phase-Shift Keying).

При описании квадратурной фазовой манипуляции QPSK введем понятие символа. Символ - электрический сигнал, представляющий один или несколько двоичных битов.

Для предаваемого цифрового потока

0, 1, 1, 0, 1, 1, 1, 0, 0,...

каждые две двоичные единицы можно заменить одним символом

Представление группы двоичных единиц одним символом позволяет понизить скорость информационного потока. Так символьная скорость сигнала с QPSK в два раза меньше скорости сигнала с BPSK. Это позволяет уменьшить полосу, занимаемую сигналом с QPSK, примерно в два раза при той же битовой скорости.

Сигнал квадратурной фазовой манипуляции можно записать

где U - амплитуда несущей на частоте coo, i- натуральное число, (pi(t) - мгновенное значение фазы несущего колебания, определяемое фазовым углом модулирующего сигнала, принимающего значения

где i = 0,1,2,3.

Для формирования QPSK используется схема, близкая по архитектуре (рис. 10.31) к схеме BPSK-модулятора

Последовательный цифровой поток {Ь«} преобразуется в демультиплексоре (последовательно-параллельный преобразователь) в четную и нечетную компоненты: синфазный содержащий только нечетные {d" K } и квадратурный {df }, включающий только четные биты, после прохождения через ФНЧ (или сигнальный процессор) поступают на входы двойных балансных (квадратурных) модуляторов. Квадратурные модуляторы задают закон изменения фазы несущего колебания (QPSK) и после преобразования в сумматоре снова в последовательный информационный поток сигнал поступает через усилитель на вход ПФ. Полосовой фильтр ограничивает полосу радиосигнала, подавляя его гармоники.

Рассмотрим упрощенно процедуру формирования радиосигнала, выделив основные процессы. В верхнем плече квадратурного модулятора (и, соответственно, в нижнем) происходит перемножение четной xi(t) (нечетной XQ(t)) последовательности с синфазной (квадратурной) составляющей несущего колебания COS O) 0 t


Рис. 10.31


Сигнал на выходе квадратурного модулятора

Преобразуя полученное соотношение к виду где слагаемые можно представить в виде

Тогда соотношение (10.49) примет вид или

Как видно из (10.54) квадратурный модулятор можно применять для модуляции несущей как по амплитуде, так и по фазе. Если xi и xq принимают значения ±1, то получаем сигнал с амплитудной модуляцией и установившимся значением, равным V2. Обычно предполагается, что амплитуда несущей нормирована к единице и тогда, амплитудные значения цифровых последовательностей xi и xq должны составлять ±1/%/2или ±0,707 (рис. 10.32). Квадратурный модулятор можно использовать и в том случае, когда требуется одновременно модулировать амплитуду и фазу несущего колебания. Так например, в случае реализации квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM) каждый символ имеет фазу, отличную от фазы предыдущего символа, и /или отличную амплитуду.


Рис. 10.32

Благодаря разделению цифрового потока {Ь к } на синфазный и квадратурный, фаза каждого из них изменяется только каждые два бита 2 Ть. Фаза несущего колебания на этом интервал может принимать только одно из четырех значений, зависящих от хф!) и хд(1 ) (рис. 10.32а).

Если в течение следующего интервала никакой из импульсов цифрового потока не изменяет знак, то несущая сохраняет фазу радиосигнала неизменной. Если один из импульсов цифрового потока изменяет знак, то фаза получает сдвиг на ±л/2. Когда происходит одновременное изменение импульсов в /"} и {1 ^}, то это приводит к сдвигу фазы несущей на л. Скачкообразное изменение фазы на 180° приводит к к спаду огибающей амплитуды до нуля (аналогично рис. 10.26). Очевидно, что такие скачки фазы приводят к значительному расширению спектра передаваемого сигнала, что недопустимо в сетях фиксированной и тем более в сетях мобильной связи. Сигнал на выходе модулятора обычно фильтруется, усиливается и затем передается по каналу связи.

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.